Geometric Minimum Spanning Trees

نویسنده

  • Martin Zachariasen
چکیده

Let S be a set of n points in < d. We present an algorithm that uses the well-separated pair decomposition and computes the minimum spanning tree of S under any Lp or polyhedral metric. It has an expected running time of O(n logn) for uniform distributions. Experimentalresults show that this approachis practical. Under a variety of input distributions, the resultingimplementation is robust and performs well for points in higher dimensional space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Minimum Diameter Minimum Cost Spanning Tree Problem

In this paper we consider bi-criteria geometric optimization problems, in particular, the minimum diameter minimum cost spanning tree problem and the minimum radius minimum cost spanning tree problem for a set of points in the plane. The former problem is to construct a minimum diameter spanning tree among all possible minimum cost spanning trees, while the latter is to construct a minimum radi...

متن کامل

Spanning Trees and Spanners

We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and low-dilation graphs.

متن کامل

Dynamic Half-Space Reporting, Geometric Optimization, and Minimum Spanning Trees

We describe dynamic data structures for half-space range reporting and for maintaining the minima of a decomposable function. Using these data structures, we obtain efficient dynamic algorithms for a number of geometric problems, including closest/farthest neighbor searching, fixed dimension linear programming, bi-chromatic closest pair, diameter, and Euclidean minimum spanning tree.

متن کامل

On the Red/Blue Spanning Tree Problem

A geometric spanning tree of a point set S is a tree whose vertex set is S and whose edge set is a set of non-crossing straight line segments with endpoints in S. Given a set of red points and a set of blue points in the plane, the red/blue spanning tree problem is to find a geometric spanning tree for red points and a geometric spanning tree for blue points such that the number of crossing poi...

متن کامل

Spanning trees with few crossings in geometric and topological graphs

We study the problem of computing a spanning tree in a connected topological graph such that the number of crossings in the spanning tree is minimum. We show it is NP-hard to find a good approximation of the minimum number of crossings even in geometric graphs. On the other hand we show that the problem is fixed-parameter tractable and present a mixedinteger linear program formulation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000